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Fire danger rating systems commonly ignore fine scale, topographically-induced weather variations.
These variations will likely create heterogeneous, landscape-scale fire danger conditions that have never
been examined in detail. We modeled the evolution of fuel moistures and the Energy Release Component
(ERC) from the US National Fire Danger Rating System across the 2009 fire season using very high reso-
lution (30 m) surface air temperature, humidity and snow ablation date models developed from a net-
work of inexpensive weather sensors. Snow ablation date occurred as much as 28 days later on North-
facing slopes than on South-facing slopes at upper elevations. South-facing slopes were hotter and drier
than North-facing slopes but slope position, in addition to aspect, was also important because nocturnal
air temperatures were coolest and humidity was highest in valley bottoms. These factors created heter-
ogeneous fuel moistures and fire danger across the study area. In the late season (August and September),
nocturnal cold air drainage and high relative humidity fostered fuel moisture recovery in valley bottoms,
where fuel moistures and ERC values were 30% and 45% higher and lower, respectively at peak fire danger
(September 29th). Dry fuel moistures and relatively high ERC values persisted on low elevation, South-
facing slopes. The driest conditions were observed 100–200 m above the valley floor where mid-slope
thermal belts frequently developed above areas of cold air pooling. We suggest that a complete under-
standing of these variations may help improve fire management decision making.

Published by Elsevier B.V.
1. Introduction

Topography and weather interact in complex mountainous ter-
rain to create steep biophysical gradients that are principally dri-
ven by changes in solar radiation and elevation. Solar insolation
fosters warmer temperatures and greater surface energy exchange
on exposed slopes and elevation influences daytime adiabatic lapse
rates (Geiger, 1966). While some of the general patterns of air tem-
perature variation in mountains are known, their interactions with
other physical factors like snowmelt, climatic water balance and
moisture content of dead woody debris have not been well
characterized.

Wildland fire danger models use information about fuels and
weather to estimate the potential that fire may ignite and spread
in a particular area (Cohen and Deeming, 1985). These models
use sensible weather parameters to estimate both fuel moisture
content and certain indices that are related to the characteristics
of an initiating fire such as the potential heat release, nominal rates
of spread and flame lengths. These fuel moistures and indices are
B.V.
used by fire managers to both plan for expected changes in fire po-
tential before ignitions have occurred or to determine an appropri-
ate response to a wildland fire once an ignition takes place.

The National Fire Danger Rating System (NFDRS) was designed
to capture worst case conditions, with Remote Automated Weather
Stations (RAWS) typically located at mid-elevation South-facing
slopes (Cohen and Deeming, 1985). Subsequently, the fire danger
ratings based on these worst case scenarios are applied across large
areas. These weather stations tell us very little about the variability
in fuel moistures in complex topography because they do not sam-
ple a range of terrain conditions. Variation in snowmelt timing,
surface air temperatures and relative humidity and incident radia-
tion are known to vary with topographic position but their influ-
ence on fine-scale spatial variation in fuel moisture and wildfire
danger indices has not been examined. Improved characterization
of spatial variation in fuel moisture and fire potential could be use-
ful for fire managers tasked with making decisions about how best
to manage wildfires or prioritize limited resources during the fire
season.

The purpose of this study was to analyze the influences of fine-
scale topoclimatic variation on fuel moistures and a common fire
danger index across the 2009 fire season. We use inexpensive air
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temperature and relative humidity sensors to derive high spatial
resolution daily surface air temperature, humidity and snowmelt
timing data, predicted across a topographically complex landscape.
We then use these data to estimate microclimate-corrected fuel
moistures and fire danger across an example study area in South-
western Montana, USA. We examine the evolution of fuel mois-
tures and fire danger across the 2009 fire season in order to
characterize the terrain-mediated variation in fuel moistures and
fire danger across the landscape. We present a simple method that
can be used to scale weather station derived-fire danger across a
landscape while accounting for terrain induced reductions in fire
danger. We suggest that a complete understanding of these varia-
tions may help improve fire management decision making.
2. Methods

2.1. Study area and data

This study was conducted in Skalkaho Basin in the Saphire
Mountains of the Bitterroot National Forest, Montana (Fig. 1). The
authors and local wildland firefighters deployed a network of
140 temperature and 57 relative humidity sensors across the area
in May, 2009. Sensors were hung on the North side of a tree at 2 m
height in a pair of inverted funnels following Hubbart et al. (2005).
More information about the sensors and study design is available
in Holden et al. (2011). These sensors collected data continuously
at 90 min intervals from 16 May–29 September, 2009.

Elevation and topographic data for this study came from a Dig-
ital Elevation Model (DEM) derived from Light Detection and Rang-
ing (LiDAR) acquired in October, 2009. The 1 m DEM was extracted
using the software package FUSION (McGaughey, 2010) and
resampled to 30 m. Additional topographic indices used in the
analysis (solar radiation and topographic dissection described la-
ter) were derived from the Advanced Spaceborne Thermal Emis-
sions Radiometer (ASTER) topography mission (Gillespie et al.,
Fig. 1. Digital elevation model of the study area and Skalkaho Basin LiDAR
acquisition area draped over a 10 m hillshade.
2005). This was necessary to account for topographic shading ef-
fects of mountains beyond the LiDAR acquisition area in the calcu-
lation of solar insolation.

Thirty-six air temperature sensors were installed approximately
1 cm below the ground surface around the Skalkaho Basin study
area at random locations stratified by solar radiation and elevation.
Data from these sensors was used to infer snow ablation date
(SAD) at each site (Fig. S1). Topographic variables used to predict
SAD included elevation, April–October cumulative solar radiation
and topographic dissection (Evans, 1972) calculated using a
210 � 210 m window size. These were used as independent vari-
ables in an empirical model to predict SAD. Additional detail on
these data and methods can be found in the Supplementary
materials.

Fire danger index calculations from the US National Fire Danger
Rating System require estimates of temperature, relative humidity,
sky cover and precipitation duration. Data from our microclimate
network provides information about spatio-temporal changes in
temperature and relative humidity. Precipitation and sky cover
were not measured concurrently with temperature and relative
humidity, therefore we assume that these values were consistent
across the study area. These assumptions are detailed below. In
this study, we focus on deriving spatially-explicit, daily tempera-
ture and humidity surfaces to inform our fire danger calculations.
A complete description of the derivation of these key surface mete-
orology fields is given below.

2.2. Analysis methods

2.2.1. Snowmelt timing data and model
A simple algorithm was used to identify the last day where

snow was present at each sensor (Fig. S1). We then developed an
empirical General Additive Model (GAM; Hastie and Tibshirani,
1990) with Julian day of SAD as a response variable and topo-
graphic variables (elevation, solar radiation and topographic dis-
section) as predictors (Fig. S2). Detailed descriptions of the model
methods and results are shown in the Supplementary materials.

2.2.2. A PCA-based approach for modeling surface air temperature and
humidity

Maps of daily predicted nocturnal minimum and maximum
temperatures (Tmin, Tmax) and minimum and maximum relative
humidity (RHmin, RHmax) were produced for our study area using
the PCA-based downscaling approach described by Holden et al.
(2011). Their analysis shows that PCA can be used to separate
and then model the spatial (PC loadings) and temporal (PC scores)
variability in temperatures from a network of inexpensive temper-
ature sensors. The loadings (values corresponding to the location of
each sensor) represent the weights of a data matrix after the scores
are removed and are correlated with topographic indices derived
from a DEM. The scores (one for each day) are correlated with daily
weather observations from nearby RAWS stations. These scores
and loadings can be separately modeled and then recombined to
estimate the original values at new locations where no in situ data
were available. A major limitation of the ibutton sensors for any
near real-time application is that they must be retrieved before
any analysis can be done and thus only provide retrospective data.
By independently modeling the spatial and temporal variation
among a network temporary ibutton sensors, we create empirical
algorithms that can be used to later predict fine-scale topoclimatic
variation after the sensors have been retrieved and are no longer
available. Importantly, this method simultaneously captures the
daily spatio-temporal variation in temperatures, which vary with
atmospheric conditions (e.g. relative humidity and atmospheric
pressure). Holden et al. (2011) describe the application of this ap-
proach for modeling minimum temperatures and cold air drainage.
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In this study, we adapt their approach to model maximum temper-
atures and relative humidity.

2.2.3. Surface air temperature downscaling
Maps of daily predicted nocturnal minimum temperatures

(Tmin) were produced for our study area using models described
by Holden et al. (2011). We used the same Principal Components
Analysis method to empirically model daily spatial and temporal
variation in maximum temperatures (Tmax). A more detailed
description of the methods used to model Tmax is provided in the
Supplementary methods.

2.2.4. Relative humidity downscaling
Twenty-five relative humidity sensors located nearest to the

center of our study area were used to model spatial variation in rel-
ative humidity. PC loadings from minimum (daytime) RH were fit
to elevation and solar radiation grids from a digital elevation
model. PC loadings from maximum (nighttime) humidity were fit
to elevation and a multi-scale dissection index (MSD) described
by Holden et al. (2011). MSD is an index of relative cell position de-
rived from a moving window calculation on a DEM, and calculated
across multiple window sizes. This index was previously found to
be strongly correlated with patterns of cold air drainage. Daily
weather data were obtained from the Gird Point RAWS station
(hereafter referred to as GP) that falls within the study area and
PC time series were fit to temperature, relative humidity and solar
radiation observations from that station.

2.2.5. Fuel moisture and fire danger index calculations
Fuel moistures (1, 10, 100 and 1000 h time lag classes) and a

daily fire danger index (Energy Release Component – ERC) were
calculated across the 2009 fire season at each 30 m grid cell using
predicted snow melt timing, Tmin, Tmax, RHmin and RHmax as inputs
to US National Fire Danger Rating System equations (Cohen and
Deeming, 1985). Following recommendations from Andrews
et al. (2003) the same fuel model (fuel model G) was applied to
all pixels across the landscape. Using a single fuel model ensures
consistent and comparable fire danger calculations between grid
cells. Live fuel moistures were assumed to remain constant during
the study and were thus fixed at 100% for both woody and herba-
ceous fuels. However, this assumption does not affect our fire dan-
ger predictions because the fire danger estimates using fuel model
G were not sensitive to changes in live fuel moisture. A sensitivity
analysis where only live fuel moisture was varied only changed
ERC by 1–2 points across a range of live fuel moistures from 30%
to 300%. Because the primary focus of this study was to examine
the influence of topoclimatic temperature and humidity variations
on fire danger, and because we do not have information about pre-
cipitation heterogeneity across the landscape, the daily precipita-
tion duration and state-of-the-weather (sky cover) for the study
period from GP was applied equally across entire study area. Heavy
dead fuels (100 and 1000 h) were assumed to begin drying on the
date of predicted snow departure. Finally, the daily ERC for each
grid cell was calculated following equations described by Cohen
and Deeming (1985). Gridded daily Energy Release Components
values were then normalized using the following equation:

Relative Fire Danger Index

¼ GridPointValue� GridMinimumValue
GridMaximumValue� GridMinimumValue

� �
� 100 ð1Þ

where GridPointValue is the spatially-explicit, calculated grid point
ERC for a given day, GridMinimumValue is the minimum value ob-
served across all grid points for that day and GridMaximumValue
is the maximum value observed across all grid points for that day.
The final metric is continuous and bounded between zero and
100, where zero indicates a pixel with the minimum fire danger
for that day and 100 indicates a pixel where fire danger was maxi-
mum for that day. The resulting daily maps from this normalization
depict spatial patterns of fire danger across the landscape for a gi-
ven day. We examined shifts in the distribution of ERC values across
the fire season by plotting density functions of average biweekly
ERC values from July–September. Finally, ERC values calculated at
GP were then used to rescale the daily gridded ERC values as
follows:

GridPointFinalValue ¼ RFDI ðRAWS ERC value

� GridMinimumValueÞ
þ GridMinimumValue ð2Þ

where GridPointFinalValue is the rescaled Energy Release Compo-
nent value, RFDI is the pixel-based, Relative Fire Danger Index from
Eq. (1), RAWS ERC value is the daily ERC value calculated at the
RAWS station that falls within the study area and GridMinimum-
Value is the daily minimum grid value as defined in Eq. (1).

3. Results

3.1. Variation in snow ablation date

The date of snow ablation was well explained by three topo-
graphic variables. A General Additive Model with elevation, solar
radiation and topographic dissection (210 � 210 m window) as
predictor variables had an r2 of 0.77 and a Root Mean Squared Error
of 6.9 days (Table S1). This model was predicted to a 30 m resolu-
tion topographic layers to produce raster grid of predicted Julian
day of snow departure for 2009 (Fig. 2B). Snow departure date var-
ied significantly with elevation and with aspect at upper eleva-
tions, with predicted snow departure occurring earliest on
Southwest-facing slopes and as much as 28 days later on North-
facing slopes than on South-facing slopes at the high elevation
sites.

3.2. Variation in surface air temperature extremes

Predicted minimum air temperature models capture the daily
variation in the magnitude of cold air drainage from night to night.
Average minimum nighttime temperatures for the study area are
shown in Fig. 2D. PCA on daily Tmax from 52 ibuttons yielded two
principal components that explained 98% of the variation among
ibuttons. PC loadings, representing the weight of each station after
the PC extractions were correlated with elevation and April–Octo-
ber cumulative incident solar radiation (Fig. S5). Random forest
models for PC1 and PC2 loadings explained 60% and 95% of the var-
iation, respectively (Table 1). The overall RMSE using a 10% data
withhold cross-validation run 100 times was 2.42 �C. Fig. 2C shows
average maximum air temperatures across the study period. Pre-
dicted maximum temperatures were warmer on South-facing
slopes and temperatures decreased with elevation (Fig. 3). Lapse
rates vary significantly from day to day, ranging from 4 �C/
1000 m on overcast days to 7.5 �C/1000 m on hot, dry days.

3.3. Variation in daily relative humidity extremes

PCA on daily minimum (daytime) relative humidity from 25
ibuttons yielded two principal components that explained 97% of
the variation among ibuttons. PC1 and PC2 loadings, representing
the weight of each station after the PC extraction were correlated
with elevation and April–October solar radiation (Fig. 4). Random
forest models for PC1 and PC2 loadings with elevation and solar
radiation as independent variables were moderately strong, with
pseudo-R2 values (variance explained) of 61% and 62%, respec-



Fig. 2. Maps of total growing season solar radiation (A), snow ablation (off) date (B), mean maximum daily temperature (C), mean minimum daily temperature (D), mean
minimum daily relative humidity (E) and mean maximum daily relative humidity(F). All means were calculated over the study period from 15 May–19 September, 2009.

Table 1
Accuracy results for models of PC loading for temperature and humidity models. Root Mean Squared Error (RMSE) results are based on a 10% data withhold performed 100 times.

Variable # Sensors PC1 load pseudo-R2 PC2 load pseudo-R2 Model RMSE

Tmin 52 0.64 0.95 1.47 �C
Tmax 52 0.58 0.81 2.42 �C
RHmin 25 0.38 0.91 7.2%
RHmax 25 0.49 0.95 13%
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tively. PC scores were well correlated with minimum relative
humidity and maximum temperature at the nearby GP station
(Fig. 5). PC scores were applied back to predicted loading surfaces
to create daily maps of RHmin. Average RHmin (15 May–29 Septem-
ber) is shown in Fig. 2E. Landscape patterns of RHmin show drier
South and west-facing slopes and decreasing humidity with
increasing elevation (Fig. 6).

PCA on daily maximum relative humidity from 25 ibuttons
yielded two principal components that explained 96% of the varia-
tion among ibuttons. PC1 and PC2 loadings, representing the
weight of each station after PC extraction, were well correlated
with elevation and a multi-scale dissection index (MSD) (Fig. 7).
Random forest models for PC1 and PC2 loadings with elevation
and MSD as independent variables were strong, with accuracies
of 62% and 68%, respectively (Table 1). PC scores on RHmax were
well correlated with maximum relative humidity and minimum
temperature at GP (Fig. 8). Cross-validation using a 10% data with-
hold yielded a RMSE of 13% (Table 1). PC scores were applied back
to predicted loading surfaces to create daily maps of RHmax. Aver-
age RHmax (15 May–29 September) is shown in Fig. 2F. RHmax was
highest in valley bottoms and on North- and East-facing slopes
(Fig. 8).

3.4. Spatial variation in fuel moistures and ERC

Predicted fuel moistures and ERC showed large variability with
terrain, and their spatial pattern changed throughout the fire sea-
son. Daily maps of normalized and predicted ERC values for 3 days



Fig. 3. Radial plots showing the distribution of predicted minimum and maximum temperatures by elevation and aspect.

Fig. 4. Scatter plots and lowess smoothing curves showing relationships between
PC loadings from minimum daytime relative humidity and elevation and solar
radiation.

Fig. 5. Scatter plots and lowess smoothing curves showing relationships between
PC loadings from minimum relative humidity and RAWS-observed minimum
relative humidity, maximum temperature and solar radiation.
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Fig. 6. Scatter plots and lowess smoothing curves showing relationships between
PC loadings from maximum relative humidity, elevation and the multiscale
dissection index (MSD).

Fig. 7. Scatter plots and lowess smoothing curves showing relationships between
PC loadings from maximum relative humidity and RAWS-observed maximum
relative humidity and minimum temperature.
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are shown in Fig. 9. Two divergent patterns are evident, one in the
spring and early summer, and one in the fall. Early season (July)
ERC values were as much as 100% lower on North-facing slopes
than South-facing slopes at upper elevations, primarily as a result
of delayed snowmelt timing (Fig. 9). Biweekly density plots of ERC
values reveal similar patterns (Fig. 10). ERC is multi-modal across
much of the fire season, with low and high peaks reflecting spatial
variation with terrain. The distribution shifts toward higher ERC in
September. At peak fire season (September 15–28), ERC becomes
uni-modal, with most of the landscape shifted toward higher
ERC. In the late season (August and September), nocturnal cold
air drainage and high relative humidity fostered fuel moisture
recovery in valley bottoms, where fuel moistures and ERC values
were 30% and 45% higher and lower, respectively at peak fire dan-
ger (September 29th). Dry fuel moistures and relatively high ERC
values persisted on low elevation, South-facing slopes. The driest
conditions were observed 100–200 m above the valley floor where
mid-slope thermal belts frequently developed above areas of cold
air pooling.
4. Discussion

Climatic and biophysical variability associated with topographic
position leads to highly variable spatial and temporal patterns of
fuel moistures and wildfire danger across the fire season. These
patterns are currently ignored by wildfire danger forecasting mod-
els, but have real implications for fire behavior and wildfire danger
modeling. Nocturnal cold air drainage has emerged as an impor-
tant feature of climate in mountains that is not addressed by most
temperature models (Geiger, 1966; Whiteman, 2000). Tempera-
ture and humidity are highly correlated, and colder air tempera-
tures in valley bottoms are accompanied by higher relative
humidity which together lead to higher fuel moistures. This pat-
tern became pronounced as the dry season progressed, as dry
atmospheric conditions fostered advection and cold air drainage.
Cold air temperature and relatively moist air draining into valley
bottoms would allow fuel moistures there to recover at night. As
day length shortens, cold air drainage begins earlier and timing
of inversion breakup is delayed (Whiteman, 1982) periods of night-
time cold air pooling lengthen, exacerbating the effects of cold air
drainage on fuel moistures.

For decades, fire managers have been interpreting regional fire
danger in the context of weather observations from local fire
weather stations. As such, they have become familiar with the rela-
tionships between various fire danger indices, such as ERC, and the
likelihood of a fire. It is therefore important to maintain consis-
tency between fire danger calculated at RAWS stations and other
estimates of fire danger variations across a landscape. The normal-
ization procedures presented here ensured consistency between
RAWS-calculated fire danger indices and their microclimate in-
duced spatial variations. This extends a fire manager’s experience
with well-known indices with additional information about how
these indices vary across the landscape. These methods ensure that
the daily worst-case fire danger conditions across the landscape
are always consistent with RAWS-calculated values. However, we
only used a single weather station in this study to demonstrate this
concept. Future work should provide a means to incorporate sur-
face weather observations from multiple stations to provide the
best depiction spatial variations in fire danger over complex ter-
rain. Thousands of sensors are currently being distributed through-
out USFS Region 1 (Montana and Idaho). Data from these sensors
will provide a means for developing high-resolution climatologies
and wildfire danger forecasting models for mountainous regions of
the northwestern US.

This study illustrates a simple and inexpensive framework for
collecting high spatial resolution information about site, watershed
or landscape-scale topoclimatic variability. The networks of tem-
perature and humidity sensors used in this study cost a total of
approximately $5500 dollars and would take one person approxi-
mately 2 months to deploy and retrieve. They yield a remarkable
amount of information about topoclimatic variation in complex
terrain. Potential products from these data include empirically-
based air temperature models (Holden et al., 2011), and similar
models for daytime and nighttime relative humidity and vapor
pressure deficit. Such models can be linked to historical datasets,
and show some potential for producing high-resolution future



Fig. 8. Radial plots showing the distribution of maximum and minimum relative humidity by elevation and aspect.
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climatologies based on the outputs from General Circulation
Models (Holden et al., 2011).

The temperature and humidity models developed for this study
demonstrate a simple, computationally efficient means of down-
scaling climate to the scale of terrain. These models rely on pre-
dicted PC loading maps that are static spatial indices predicted to
terrain variables. The fitted statistical models of PC1and PC2 scores
(time series) are stored in computer memory. These algorithms (A
linear model for PC1 and a Random Forest model for PC2) could be
loaded from memory and fit to either historical or real-time RAWS
data and then applied back to the PC loading surfaces to produce
daily high spatial resolution temperature and humidity surfaces.
These models could be easily brought into operational use and to
empirically correct RAWS in near real-time. Retrospective high-
resolution climatologies could also be developed from RAWS or
other gridded data sources and used to understand spatial and
temporal patterns of historical wildfire danger at very fine
resolutions.

Understanding the landscape patterns of remotely sensed burn
severity has become an area of active research. A number of studies
have demonstrated that topography significantly influences severe
fire occurrence (Holden et al., 2009; Broncano and Retana, 2004;
Bradstock et al., 2010; Lentile et al., 2006). However, these studies
rely largely on topographic indices (elevation, aspect, dissection)
that are indirect proxies for more physically-based variables. Rela-
tionships between elevation, solar radiation and surface air tem-
peratures are well known. Additional morphometric indices show
potential utility for downscaling climatic and physical variables
in complex terrain. For example, topographic dissection at multiple
spatial scales appears to be correlated with snow ablation date.
Snow drifting is an important component of snow accumulation
and snowmelt (Tarboton and Luce, 1996). A 7 � 7 pixel
(210 � 210 m) dissection index was a significant independent var-
iable in our empirical snowmelt model. A multi-scale dissection in-
dex (Holden et al., 2011) was important for predicting both
nocturnal air temperature and relative humidity. Similarly, a Topo-
graphic Position Index (TPI; Dylan et al., in review) was consis-
tently an important predictor of burn severity occurrence.
Continued development of empirical methods for resolving cli-
matic and biophysical variation in complex terrain may rely on
translation of these indices into models of physical variables.

Several studies have noted that climate and topography exert
top down (synoptic atmospheric variation) and bottom-up (e.g.
topography and vegetation) control on wildfire extent (Heyerdahl
et al., 2001) and severity (Dylan et al., in review). Our analysis
highlights the complex, fine-scale interactions between climate
and topography that likely influence landscape-scale patterns of
vegetation production, fuel conditions, fire occurrence, extent,
behavior and ecological effects. Regionally synchronous fire years
occur in the Northern Rockies during warm, dry springs (Morgan
et al., 2008; Heyerdahl et al., 2008). Because our study was
conducted during a single relatively cool, wet year, we can only
speculate about how relative variation in fuel moisture patterns
varies from year to year. Our results suggest a physical basis



Fig. 9. Spatially-explicit predictions of the Energy Release Component for three example days during the study period: 24 July, 14 September and 28 September, 2009. The
maps on the left show the Relative Fire Danger Index that has been normalized across its daily range of ERC values (Eq. (1)) and the maps in the right column show the final
ERC values after the temporal fire danger trend from the RAWS station was added back to the grids (Eq. (2)).
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behind climate–terrain interactions that could limit landscape-
scale occurrence and spread of historical, naturally occurring
wildland fires. Delayed snowmelt timing during cool springs would
limit early season fire growth, while topoclimatic variation in the
fall (cool, wet North slopes and valley bottoms) would also limit
rate of spread, particularly during relatively cool, wet years. Addi-
tional analysis using historical reconstructions of high-resolution
fire danger indices across multiple fire seasons would be needed
to better understand this connection.

Wildfires, when viewed over a long enough time scale, are
inevitable. They are also easier to suppress under cool, relatively
wet conditions. Fire professionals face tremendous personal risk
when making decisions about how to manage planned and un-
planned wildland fires. It is not surprising then that most wild-
fires are suppressed before they become large and difficult to
manage. This suppression paradigm continues despite the grow-
ing awareness of the vital ecological role, fire has always played
in shaping many vegetation communities around the world (Agee,
1993). However, with continued fire management practices that
favor initial attack and suppression, most of our total area burned
will continue to occur when wildfires that are ignited during ex-
tremely dry periods escape suppression, become large, and burn
at high intensity. The severity of these fires, compared to those
burning under more moderate conditions tends to be higher
across a range of topographic conditions (Dylan et al., in review).
In addition, these large fire incidents are more difficult to control,
cost the public billions of dollars, and are dangerous to fight.
Thus, by extinguishing fires that have the potential to become
ecologically beneficial, we may be deferring some of the true
‘‘external’’ costs of landscape-scale fire management. This is par-
ticularly true in the western United States, where humans have
expanded into and live in fire-prone, mountainous environments.
Integration of fine-scale fuel moisture and potential energy re-
lease information into wildfire management decision making
may be needed in order to make fully informed decisions about
the risks and potential positive ecological effects of wildfires. Im-
proved characterization of fine-scale wildfire fire danger and its
application in fire management decisions could enhance fire-
fighter safety, expand opportunities for fire use and potentially
save the government millions of dollars.



Fig. 10. Probability density plots of 2 week averaged ERC from July–September,
2009. Distributions are multi-modal and show a shift from most of the study area in
low fire danger early in the season to the majority of the study area having high fire
danger in the late season.
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Despite growing concern about the potential ecological impacts
of climate warming, vegetation management options for mitigat-
ing climate change impacts may be somewhat limited. Land-
scape-scale changes in vegetation are likely to be driven largely
by disturbances such as insect and disease damage or wildfire.
While insect and disease spread will be difficult or impossible to
control, we do have some control over when and where wildland
fires occur. Wildfires modify patterns of fuel and vegetation on
the landscape which influence the severity of subsequent wildfires
(Collins et al., 2009; Holden et al., 2010). By modeling the variation
in fuel moistures and potential fire behavior at fine resolutions that
are more consistent with fire as a physical process and incorporat-
ing that information into management decisions, we could poten-
tially reduce the ecological risks associated with prescribed and
wildland fire use. Improved understanding of climatic variation
in complex topography and its influence on spatial variation in fire
danger, fire behavior and post-fire ecological effects will likely be
essential if we are to continue our efforts to help fire managers
maintain and restore fire as a dominant and beneficial ecological
process.
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